Effects of excitatory modulation on intrinsic properties of turtle motoneurons.

نویسندگان

  • T George Hornby
  • Jennifer C McDonagh
  • Robert M Reinking
  • Douglas G Stuart
چکیده

The purpose of this study was to quantify the effects of excitatory modulation on the intrinsic properties of motoneurons (MNs) in slices of spinal cord taken from the adult turtle. Responses were noted following application of an excitatory modulator: serotonin (5-HT), muscarine, trans-1-amino-1,3-cyclopentane dicarboxylic acid (tACPD), or all three combined. A sample of 44 MNs was divided into 2 groups, on the basis of whether MNs did (28/44) or did not (16/44) demonstrate a nifedipine-sensitive acceleration of discharge during a 2-s, intracellularly injected stimulus pulse. Such acceleration indicates the development of a plateau potential (PP). Excitatory modulation lowered the MNs' resting potential, increased input resistance, decreased rheobase, reduced several afterhyperpolarization values, and shifted the conventional, one-phase stimulus current-spike frequency (I-f) relation to the left. For both MN groups, the relative efficacy of excitatory modulation on both non-PP and PP MNs was generally in the following order: combined application > 5-HT approximately muscarine > tACPD. In many instances, the effects of modulation differed significantly for non-PP versus PP MNs, the most pronounced being in their I-f relation. To describe this difference, it was necessary to measure a two-phase relation. In PP MNs, excitatory modulation considerably increased the slope of the first (initial) phase and flattened the second (later) phase of this relation. The latter result bore similarities to that obtained in a previous study, which addressed MN firing behavior during fictive locomotion of the high-decerebrate cat.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dopaminergic modulation of spinal neuronal excitability.

It is well recognized that dopamine (DA) can modulate spinal networks and reflexes. DA fibers and receptors are present in the spinal cord, and evidence for DA release within the spinal cord has been published. A critical gap is the lack of data regarding dopaminergic modulation of intrinsic and synaptic properties of motoneurons and ventral interneurons in the mammalian spinal cord. In this pa...

متن کامل

Morphology, intrinsic membrane properties, and rotation-evoked responses of trochlear motoneurons in the turtle.

Intrinsic properties and rotation-evoked responses of trochlear motoneurons were investigated in the turtle using an in vitro preparation consisting of the brain stem with attached temporal bones that retain functional semicircular canals. Motoneurons were divided into two classes based on intrinsic properties. The first class exhibited higher impedance (123.0 +/- 11.0 MOmega), wider spikes (0....

متن کامل

Fast-to-slow conversion following chronic low-frequency activation of medial gastrocnemius muscle in cats. II. Motoneuron properties.

Chronic stimulation (for 2-3 mo) of the medial gastrocnemius (MG) muscle nerve by indwelling electrodes renders the normally heterogeneous MG muscle mechanically and histochemically slow (type SO). We tested the hypothesis that motoneurons of MG muscle thus made type SO by chronic stimulation would also convert to slow phenotype. Properties of all single muscle units became homogeneously type S...

متن کامل

Title : Morphology , Intrinsic Membrane Properties , and Rotation - evoked Responses of Trochlear Motoneurons in the Turtle

Intrinsic properties and rotation-evoked responses of trochlear motoneurons were investigated in the turtle using an in vitro preparation consisting of the brainstem with attached temporal bones that retain functional semicircular canals. Motoneurons were divided into two classes based upon intrinsic properties. The first class exhibited higher impedance (123.0 ± 11.0 M), wider spikes (0.99 ± 0...

متن کامل

Regulation of intrinsic and synaptic properties of neonatal rat trigeminal motoneurons by metabotropic glutamate receptors.

We studied how metabotropic glutamate receptor (mGluR) activation modifies the synaptic and intrinsic membrane properties of neonatal rat trigeminal motoneurons using the broad-spectrum mGluR agonist (1S,3R)-1-amino-1,3-cyclopentane-dicarboxylic acid [(1S,3R)-ACPD], group I/II antagonist (+/-)-alpha-methyl-4-carboxy-phenylglycine (MCPG), and group III agonist L-2-amino-4-phosphonobutanoate (L-A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 88 1  شماره 

صفحات  -

تاریخ انتشار 2002